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Fast Hamiltonian sampling for large-scale structure inference
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ABSTRACT
In this paper we present a new and efficient Bayesian method for non-linear three-dimensional
large-scale structure inference. We employ a Hamiltonian Monte Carlo (HMC) sampler to ob-
tain samples from a multivariate highly non-Gaussian lognormal Poissonian density posterior
given a set of observations. The HMC allows us to take into account the non-linear relations
between the observations and the underlying density field which we seek to recover. As the
HMC provides a sampled representation of the density posterior any desired statistical sum-
mary, such as the mean, mode or variance, can be calculated from the set of samples. Further, it
permits us to seamlessly propagate non-Gaussian uncertainty information to any final quantity
inferred from the set of samples. The developed method is extensively tested in a variety of
test scenarios, taking into account a highly structured survey geometry and selection effects.
Tests with a mock galaxy catalogue based on the Millennium Run show that the method is
able to recover the filamentary structure of the non-linear density field. The results further
demonstrate the feasibility of non-Gaussian sampling in high-dimensional spaces, as required
for precision non-linear large-scale structure inference. The HMC is a flexible and efficient
method, which permits for simple extension and incorporation of additional observational
constraints. Thus, the method presented here provides an efficient and flexible basis for future
high-precision large-scale structure inference.

Key words: methods: data analysis – galaxies: statistics – cosmology: observations – large
scale structure of Universe.

1 IN T RO D U C T I O N

Modern large galaxy surveys allow us to probe cosmic large-scale
structure to very high accuracy if the enormous amount of data can
be processed and analysed efficiently. Especially, precision recon-
struction of the three-dimensional density field from observations
poses complex numerical challenges. For this reason, several recon-
struction methods and attempts to recover the underlying density
field from galaxy observations have been presented in literature
(see e.g. Bertschinger & Dekel 1989, 1991; Hoffman 1994; Lahav
et al. 1994; Fisher et al. 1995; Sheth 1995; Webster, Lahav & Fisher
1997; Bistolas & Hoffman 1998; Schmoldt et al. 1999; Saunders &
Ballinger 2000a; Zaroubi 2002; Erdoğdu et al. 2004; Kitaura et al.
2009; Jasche et al. 2010). Recently, Kitaura et al. (2009) presented
a high-resolution Wiener reconstruction of the Sloan Digital Sky
Survey (SDSS) matter density field, and demonstrated the feasibil-
ity of precision large-scale structure analysis. The Wiener filtering
approach is based on a linear data model, which takes into account
several observational effects, such as survey geometry, selection ef-

�E-mail: jjasche@mpa-garching.mpg.de

fects and noise (Kitaura & Enßlin 2008; Kitaura et al. 2009; Jasche
et al. 2010). Although, the Wiener filter has proven to be extremely
efficient for three-dimensional matter field reconstruction, it still
relies on a Gaussian approximation of the density posterior. While
this is an adequate approximation for the largest scales, precision
recovery of non-linear density structures may require non-Gaussian
posteriors. Especially, the detailed treatment of the non-Gaussian
behaviour and structure of the Poissonian shot-noise contribution
may allow for more precise recovery of poorly sampled objects.
In addition, for a long time it has been suggested that the fully
evolved non-linear matter field can be well described by lognormal
statistics (see e.g. Hubble 1934; Peebles 1980; Coles & Jones 1991;
Gaztanaga & Yokoyama 1993; Kayo, Taruya & Suto 2001). These
discussions seem to advocate the use of a lognormal Poissonian
posterior for large-scale structure inference. Several methods have
been proposed to take into account non-Gaussian density posteri-
ors (see e.g. Saunders & Ballinger 2000b; Kitaura & Enßlin 2008;
Enßlin, Frommert & Kitaura 2009).

However, if the recovered non-linear density field is to be used
for scientific purposes, the method not only has to provide a single
estimate, such as a mean or maximum a posteriori reconstruction,
but it should also provide uncertainty information, and the means to
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non-linearly propagate this uncertainty to any final quantity inferred
from the recovered density field.

For this reason, here we propose a new Bayesian method for
non-linear large-scale structure inference. The developed com-
puter program HAmiltonian Density Estimation and Sampling
(HADES) explores the posterior distribution via a Hamiltonian Monte
Carlo (HMC) sampling scheme. Unlike conventional Metropolis–
Hastings algorithms, which move through the parameter space by
a random walk, and therefore require prohibitive amounts of steps
to explore high-dimensional spaces, the HMC sampler suppresses
random walk behaviour by introducing a persistent motion of the
Markov chain through the parameter space (Duane et al. 1987; Neal
1993, 1996). In this fashion, the HMC sampler maintains a reason-
able efficiency even for high-dimensional problems (Hanson 2001).
The HMC sampler has been widely used in Bayesian computation
(see e.g. Neal 1993). In cosmology it has been employed for cos-
mological parameter estimation and cosmic microwave background
data analysis (Hajian 2007; Taylor, Ashdown & Hobson 2008).

In this paper we demonstrate that the HMC can efficiently be
used to sample the lognormal Poissonian posterior even in high-
dimensional spaces. In this fashion, the method is able to take into
account the non-linear relationship between the observation and the
underlying density which we seek to recover. The scientific output
of the HMC is a sampled representation of the density posterior. For
this reason, any desired statistical summary such as mean, mode and
variance can easily be calculated from the HMC samples. Further,
the full non-Gaussian uncertainty information can seamlessly be
propagated to any finally estimated quantity by simply applying the
corresponding estimation procedure to all samples. This allows us
to estimate the accuracy of conclusions drawn from the analysed
data.

In this paper, we begin, in Section 2, by presenting a short jus-
tification for the use of the lognormal distribution as a prior for
non-linear density inference, followed by a discussion of the log-
normal Poissonian posterior in Section 3. Section 4 outlines the
HMC method. In Section 5 the Hamiltonian equations of motion
for the lognormal Poissonian posterior are presented. Details of the
numerical implementation are described in Section 6. The method
is extensively tested in Section 7 by applying HADES to generated
mock observations, taking into account a highly structured survey
geometry and selection effects. In Section 8 we summarize and
conclude.

2 TH E L O G N O R M A L D I S T R I BU T I O N
OF DENSITY

In standard cosmological pictures, it is assumed that the initial seed
perturbations in the primordial density field originated from an in-
flationary phase in the early stages of the big bang. This inflationary
phase enhances microscopic quantum fluctuations to macroscopic
scales yielding the initial density fluctuations required for grav-
itational collapse. These theories predict the initial density field
amplitudes to be Gaussian distributed. However, it is obvious that
Gaussianity of the density field can only be true in the limit |δ| � 1,
where δ is the density contrast. In fully evolved density fields with
amplitudes of σ 8 > 1, as observed in the sky at scales of galaxies,
clusters and superclusters, a Gaussian density distribution would
allow for negative densities, and therefore would violate weak and
strong energy conditions. In particular, it would give rise to negative
mass (δ < −1). Therefore, in the course of gravitational structure
formation the density field must have changed its statistical prop-
erties. Coles & Jones (1991) argue that assuming Gaussian initial

conditions in the density and velocity distributions will lead to a
lognormally distributed density field. It is a direct consequence of
the continuity equation or the conservation of mass.

Although, the exact probability distribution for the density field in
non-linear regimes is not known, the lognormal distribution seems
to be a good phenomenological guess with a long history. Al-
ready Hubble noted that galaxy counts in two-dimensional cells
on the sky can be well approximated by a lognormal distribution
(Hubble 1934). Subsequently, the lognormal distribution has been
extensively discussed and agreements with galaxy observations
have been found (e.g. Hubble 1934; Peebles 1980; Coles & Jones
1991; Gaztanaga & Yokoyama 1993; Kayo et al. 2001). Kayo et al.
(2001) studied the probability distribution of cosmological non-
linear density fluctuations from N-body simulations with Gaussian
initial conditions. They found that the lognormal distribution accu-
rately describes the non-linear density field even up to values of the
density contrast of δ ∼ 100.

Therefore, according to observations and theoretical consider-
ations, we believe that the statistical behaviour of the non-linear
density field can be well described by a multivariate lognormal
distribution, as given by

P({sk}|Q) = 1√
2π det(Q)

e−(1/2)
∑

ij [ln(1+si )+μi ]Q−1
ij

[ln(1+sj )+μj ]

×
∏

k

1

1 + sk

, (1)

where Q is the covariance matrix of the lognormal distribution and
μi describes a constant mean field given by

μi = 1

2

∑
i,j

Qij . (2)

This probability distribution seems to be an adequate prior choice
for reconstructing the present density field. However, using such a
prior requires highly non-linear reconstruction methods, as will be
presented in the following.

3 LO G N O R M A L PO I S S O N I A N P O S T E R I O R

Studying the actual matter distribution of the Universe requires to
draw inference from some observable tracer particle. The most ob-
vious tracer particles for the cosmic density field are galaxies, which
tend to follow the gravitational potential of matter. As galaxies are
discrete particles, the galaxy distribution can be described as a spe-
cific realization drawn from an inhomogeneous Poisson process
(see e.g. Layzer 1956; Peebles 1980; Martı́nez & Saar 2002). The
corresponding probability distribution is given as

P
({

N
g
k

} |{λk}
) =

∏
k

(λk)N
g
k e−λk

N
g
k !

, (3)

where Ng
k is the observed galaxy number at position xk in the sky

and λk is the expected number of galaxies at this position. The mean
galaxy number is related to the signal sk via

λk = RkN̄ [1 + B(s)k], (4)

where Rk is a linear response operator, incorporating survey ge-
ometries and selection effects, N̄ is the mean number of galaxies
in the volume and B(x)k is a non-linear, non-local, bias operator at
position xk. The lognormal prior given in equation (1) together with
the Poissonian likelihood given in equation (3) yields the lognormal
Poissonian posterior, for the density contrast sk given some galaxy
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observations Ng
k :

P
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(5)

However, this posterior greatly simplifies if we perform the change
of variables by introducing rk = ln(1 + sk). Note that this change of
variables is also numerically advantageous, as it prevents numerical
instabilities at values δ ∼ −1. Hence, we yield the posterior

P
({rk}|

{
N

g
k

}) = e−(1/2)
∑

ij (ri+μi )Q−1
ij

(rj +μj )

√
2π det(Q)

×
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{
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}N
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k e−RkN̄[1+B(er−1)k ]

N
g
k !

.

(6)

It is important to note that this is a highly non-Gaussian distribution,
and non-linear reconstruction methods are required in order to per-
form accurate matter field reconstructions in the non-linear regime.
In example, estimating the maximum a posteriori values from the
lognormal Poissonian distribution involves the solution of implicit
equations. However, we are not solely interested in a single esti-
mate of the density distribution; we rather prefer to draw samples
from the lognormal Poissonian posterior. In the following, we are
therefore describing a numerically efficient method to sample from
this highly non-Gaussian distribution.

4 H AMILTO NIAN SAMPLING

As already described in the previous section the lognormal Poisso-
nian posterior will involve highly non-linear reconstruction methods
and will therefore be numerically demanding. Nevertheless, since
we propose a Bayesian method, we are not interested in only pro-
viding a single estimate of the density field, but would rather be
able to sample from the full non-Gaussian posterior. Unlike, in the
Gibbs sampling approach to density field sampling, as proposed in
Jasche et al. (2010), there unfortunately exists no known way to
directly draw samples from the lognormal Poissonian distribution.
For this reason, a Metropolis–Hastings sampling mechanism has to
be employed.

However, the Metropolis–Hastings has the numerical disadvan-
tage that not every sample will be accepted. A low acceptance
rate can therefore result in a prohibitive numerical scaling for the
method, especially since we are interested in estimating full three-
dimensional matter fields which usually have about 106 or more
free parameters sk. This high rejection rate is due to the fact that
conventional Markov chain Monte Carlo (MCMC) methods move
through the parameter space by a random walk and therefore re-
quire a prohibitive amount of samples to explore high-dimensional
spaces. Given this situation, we propose to use a hybrid Monte Carlo
method which, in the absence of numerical errors, would yield an
acceptance rate of unity (see e.g. Duane et al. 1987; Neal 1993,
1996).

The so-called HMC method exploits techniques developed to
follow classical dynamical particle motion in potentials (Duane et al.
1987; Neal 1993, 1996). In this fashion the Markov sampler follows
a persistent motion through the parameter space, suppressing the
random walk behaviour. This enables us to sample with reasonable
efficiency in high-dimensional spaces (Hanson 2001).

The idea of the Hamiltonian sampling can be easily explained.
Suppose that we wish to draw samples from the probability distri-
bution P({xi}), where {xi} is a set consisting of the N elements xi.
If we interpret the negative logarithm of this posterior distribution
as a potential,

ψ(x) = − ln(P(x)), (7)

and by introducing a ‘momentum’ variable pi and a ‘mass matrix’
M, as nuisance parameters, we can formulate a Hamiltonian de-
scribing the dynamics in the multidimensional phase space. Such a
Hamiltonian is then given as

H =
∑

i

∑
j

1

2
pi M

−1
ij pj + ψ(x). (8)

As can be seen in equation (8), the form of the Hamiltonian is such
that this distribution is separable into a Gaussian distribution in the
momenta {pi} and the target distribution P({xi}) as

e−H = P({xi}) e−(1/2)
∑

i

∑
j pi M−1

ij
pj . (9)

It is therefore obvious that marginalizing over all momenta will
yield again our original target distribution P({xi}).

Our task now is to draw samples from the joint distribution,
which is proportional to exp(−H). To find a new sample of the joint
distribution we first draw a set of momenta from the distribution
defined by the kinetic energy term, which is an N-dimensional
Gaussian with a covariance matrix M. We then allow our system to
evolve deterministically, from our starting point ({xi}, {pi}) in the
phase space for some fixed pseudo-time τ according to Hamilton’s
equations:

dxi

dt
= ∂H

∂pi

, (10)

dpi

dt
= ∂H

∂xi

= −∂ψ(x)

∂xi

. (11)

The integration of these equations of motion yields the new position
({x′

i}, {p′
i}) in phase space. This new point is accepted according

to the usual acceptance rule

PA = min[1, exp(−(H ({x ′
i}, {p′

i}) − H ({xi}, {pi}))]. (12)

Since the equations of motion provide a solution to a Hamilto-
nian system, energy or the Hamiltonian given in equation (8) is
conserved, and therefore the solution to this system provides an
acceptance rate of unity. In practice however, numerical errors can
lead to a somewhat lower acceptance rate. Once a new sample has
been accepted the momentum variable is discarded and the process
restarts by randomly drawing a new set of momenta. The individual
momenta {pi} will not be stored, and therefore discarding them
amounts to marginalizing over this auxiliary quantity. Hence, the
Hamiltonian sampling procedure basically consists of two steps.
The first step is a Gibbs sampling step, which yields a new set of
Gaussian-distributed momenta. The second step, on the other hand,
amounts to solving a dynamical trajectory on the posterior surface.
In this fashion, the HMC incorporates a particular Metropolis–
Hastings transition probability which, in the absence of numerical
errors, guarantees an acceptance rate of unity (Neal 1993, 1996).
However, in a numerical implementation rejection may occur in
cases where the numerical integration of the Hamiltonian trajec-
tory is not accurate enough. In this case, the Metropolis acceptance
rule given in equation (12) will restore detailed balance and guar-
antees the chain to converge to the true target distribution P({xi}).
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The efficiency of the HMC is thus partly determined by the accu-
racy of the numerical integration scheme. The particular numerical
implementation of our method will be discussed below.

5 EQUAT I O N S O F M OT I O N FO R A
L OGNORMAL POISSONIAN SYSTEM

In the framework of Hamiltonian sampling the task of sampling
from the lognormal Poissonian posterior reduces to solving the
corresponding Hamiltonian system. Given the posterior distribution
defined in equation (6) we can write the potential ψ({rk}) as

ψ({rk}) = 1

2
ln(2π det(Q))

+ 1

2

∑
ij

(ri + μi)Q
−1
ij (rj + μj )

−
∑

k

{
ln

(
(RkN̄ )N

g
k

N
g
k !

)
+ N

g
k ln (1 + B(er − 1)k)

−RkN̄
[
1 + B(er − 1)k

]}
. (13)

The gradient of this potential with respect to rl then yields the forces,
given as

∂ψ({rk})
∂rl

=
∑

j

Q−1
lj (rj + μj )

−
(

N
g
l

1 + B(er − 1)l
− RlN̄

)
∂B(er − 1)

∂(er − 1)

∣∣∣∣
l

erl . (14)

Equation (14) obviously is a very general formulation of the recon-
struction problem, and it demonstrates that the Hamiltonian sampler
can in principle deal with all kinds of non-linearities, especially in
the case of the bias operator B(x). However, for the sake of this pa-
per, but without loss of generality, in the following we will assume
a linear bias model, as a special case.

There are several things to remark about the treatment of galaxy
bias at this point. Most importantly note that our method does
not require the definition of a linear bias. In order to take into
account more general non-linear and non-local bias models, one
simply solves the problem according to equations (13) and (14)
by specifying the desired bias model and its derivative. However,
the sampling method, as described in this paper, provides a much
more appealing approach to study various different bias models
via a Blackwell–Rao estimator. As described in Appendix C this
procedure allows for the generation of various density posterior
distributions with different bias models in a post-processing step.
Since the generation of these Blackwell–Rao estimators requires
only a negligible fraction of the total computation time required to
produce the Markov chain, it is much more appealing to defer the
treatment of various different bias models to the post-processing
step, rather than running many Markov chains each with a different
bias model to study, although this can be done for the expense
of additional computational time. Since the bias treatment can in
principle be deferred to a post-processing analysis and since the
linear bias model is computationally less expensive than a more
complex model in the sampling procedure, in the following we will
assume the linear bias relation

B(x)k = bxk, (15)

where b is a constant linear bias factor.

We then obtain the potential

ψ({rk}) = 1

2
ln(2π det(Q))

+ 1

2

∑
ij

(ri + μi)Q
−1
ij (rj + μj )

−
∑

k

{
ln

(
(RkN̄ )N

g
k

N
g
k !

)
+ N

g
k ln(1 + b (er − 1))

−RkN̄[1 + b (er − 1)]

}
, (16)

and the corresponding gradient reads

∂ψ({rk})
∂rl

=
∑

j

Q−1
lj (rj + μj ) −

(
N

g
l

1 + b (er − 1)
− RlN̄

)
b erl .

(17)

Inserting these results in equations (10) and (11) then yields the
equations of motion

dri

dt
=

∑
j

M−1
ij pj (18)

and

dpi

dt
= −

∑
j

Q−1
ij (rj + μj ) −

(
N

g
i

1 + b (eri − 1)
− RiN̄

)
b eri .

(19)

New points on the lognormal Poissonian posterior surface can then
easily be obtained by solving for the trajectory governed by the
dynamical equations (18) and (19).

6 N U M E R I C A L I M P L E M E N TAT I O N

Our numerical implementation of the lognormal Poissonian sam-
pler is named HADES. It utilizes the FFTW3 library for fast Fourier
transforms and the GNU scientific library (gsl) for random number
generation (Galassi et al. 2003; Frigo & Johnson 2005). In particular,
we use the Mersenne Twister MT19937, with 32-bit word length,
as provided by the gsl rng mt19937 routine, which was designed
for Monte Carlo simulations (Matsumoto & Nishimura 1998).

6.1 The leapfrog scheme

As described above, a new sample can be obtained by calculating
a point on the trajectory governed by equations (18) and (19). This
means that if we are able to integrate the Hamiltonian system exactly
energy will be conserved along such a trajectory, yielding a high
probability of acceptance. However, the method is more general due
to the Metropolis acceptance criterion given in equation (12). In
fact, it is allowed to follow any trajectory to generate a new sample.
This would enable us to use approximate Hamiltonians, which may
be evaluated computationally more efficiently. Note, however, that
only trajectories that approximately conserve the Hamiltonian given
in equation (8) will result in high acceptance rates.

In order to achieve an optimal acceptance rate, we seek to solve
the equations of motion exactly. For this reason, we employ a
leapfrog scheme for the numerical integration. Since the leapfrog is
a symplectic integrator, it is exactly reversible, a property required
to ensure that the chain satisfies detailed balance (Duane et al. 1987).
It is also numerically robust, and allows for simple propagation of
errors. Here, we will implement the kick–drift–kick scheme. The
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equations of motions are integrated by making n steps with a finite
step size ε, such that τ = nε:

pi

(
t + ε

2

)
= pi(t) − ε

2

∂ψ({rk})
∂rl

∣∣∣∣
ri (t)

, (20)

ri (t + ε) = ri(t) − ε

mi

pi

(
t + ε

2

)
, (21)

pi (t + ε) = pi

(
t + ε

2

)
− ε

2

∂ψ({rk})
∂rl

∣∣∣∣
ri (t+ε)

. (22)

We iterate these equations until t = τ . Also note that it is important
to vary the pseudo-time interval τ to avoid resonant trajectories. We
do so by drawing n and ε randomly from a uniform distribution.
For the time being we will employ the simple leapfrog scheme.
However, it is possible to use higher order integration schemes,
provided that exact reversibility is maintained.

6.2 Hamiltonian mass

The Hamiltonian sampler has a large number of adjustable param-
eters, namely the Hamiltonian ‘mass matrix, M, which can greatly
influence the sampling efficiency. If the individual rk were Gaussian
distributed, a good choice for HMC masses would be to set them in-
versely proportional to the variance of that specific rk (Taylor et al.
2008). However, for non-Gaussian distributions, such as the log-
normal Poissonian posterior, it is reasonable to use some measure
of the width of the distribution (Taylor et al. 2008). Neal (1996)
proposes to use the curvature at the peak.

In our case, we expanded the Hamiltonian given in equation (16)
in a Taylor series up to quadratic order for |ri| � 1. This Taylor
expansion yields a Gaussian approximation of the lognormal Pois-
sonian posterior. Given this approximation and according to the
discussion in Appendix A, the Hamiltonian mass should be set as

Mij = Q−1
ij − [(

N
g
i − RiN̄

)
b − N

g
i b2

]
δK
ij . (23)

However, calculation of the leapfrog scheme requires inversions of
M. Considering the high dimensionality of the problem, inverting
and storing M−1 is computationally impractical. For this reason we
construct a diagonal ‘mass matrix’ from equation (23). We found
that choosing the diagonal of M, as given in equation (23), in its
Fourier basis yields faster convergence for the sampler than a real-
space representation since it accounts for the correlation structure
of the underlying density field.

6.3 Parallelization

For any three-dimensional sampling method, such as the lognormal
Poisson sampler or the Gibbs sampler presented in Jasche et al.
(2010), CPU time is the main limiting factor. For this reason par-
allelization of the code is a crucial issue. Since our method is a
true Monte Carlo method, there exist in principle two different ap-
proaches to parallelize our code.

The numerically most demanding step in the sampling chain is
the leapfrog integration with the evaluation of the potential. One
could therefore parallelize the leapfrog integration scheme, which
requires parallelizing the fast Fourier transform. The FFTW3 li-
brary provides parallelized fast Fourier transform procedures, and
implementation of those is straightforward (Frigo & Johnson 2005).
However, optimal speed-up cannot be achieved. The other approach
relies on the fact that our method is a true Monte Carlo process, and
each CPU can therefore calculate its own Markov chain. In this

fashion, we gain optimal speed-up and the possibility to initialize
each chain with different initial guesses.

The major difference between these two parallelization ap-
proaches is that with the first method one tries to calculate a rather
long sampling chain, while the latter one produces many shorter
chains.

7 TESTING HADES

In this section, we apply HADES to simulated mock observations,
where the underlying matter signal is perfectly known. With these
tests we will be able to demonstrate that the code produces results
consistent with the theoretical expectation. Furthermore, we wish to
gain insight into how the code performs in real-world applications,
when CPU time is limited.

7.1 Setting up mock observations

In this section we will describe a similar testing set-up as described
in Jasche et al. (2010). For the purpose of this paper we generate
lognormal random fields according to the probability distribution
given in equation (1). These lognormal fields are generated based
on cosmological power spectra for the density contrast δ. We gen-
erate these power spectra, with baryonic wiggles, following the
prescription described in Eisenstein & Hu (1998) and Eisenstein
& Hu (1999) and assuming a standard Lambda cold dark matter
(	CDM) cosmology with the set of cosmological parameters (
m

= 0.24, 
	 = 0.76, 
b = 0.04, h = 0.73, σ 8 = 0.74, ns = 1). Given
these generated density fields we draw random Poissonian samples
according to the Poissonian process described in equation (3).

The survey properties are described by the galaxy selection func-
tion Fi and the observation mask Mi where the product

Ri = Fi Mi (24)

yields the linear response operator.
The selection function is given by

Fi =
(

ri

r0

)b (
b

γ

)−b/γ

eb/γ−(ri /r0)γ , (25)

where ri is the comoving distance from the observer to the centre
of the ith voxel. For our simulation we chose parameters b = 0.6,
r0 = 500 Mpc and γ = 2.

In Fig. 1 we show the selection function together with the sky
mask, which defines the observed regions in the sky. The two-
dimensional sky mask is given in sky coordinates of right ascension
and declination. We designed the observational mask to represent
some of the prominent features of the SDSS mask (see Abazajian
et al. 2009, for a description of the SDSS Data Release 7). The
projection of this mask into the three-dimensional volume yields
the three-dimensional mask Mi .

Two different projections of this generated mock galaxy survey
are presented in Fig. 2 to give a visual impression of the artificial
galaxy observation.

7.2 Burn-in behaviour

The theory described above demonstrates that the Hamiltonian sam-
pler will provide samples from the correct probability distribution
function as long as the initial conditions for the leapfrog integration
are part of the posterior surface. However, in practice the sampler
is not initialized with a point on the posterior surface, and there-
fore an initial burn-in phase is required until a point on the correct
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Figure 1. Selection function and two-dimensional sky mask used for the generation of mock galaxy observations.

Figure 2. Volume rendering of artificial galaxy counts, generated as described in Section 7.1. The two panels show different projections. Effects of survey
geometry and selection function are clearly visible. The observer is centred at (0, 0, 0).

posterior surface is identified. As there exists no theoretical crite-
rion, which tells us when the initial burn-in period is completed, we
have to test this initial sampling phase through experiments. These
experiments are of practical relevance for real-world applications,
as they allow us to estimate how many samples are required before
the sampler starts sampling from the correct posterior distribution.
To gain intuition we set up a simple experiment, in which we set
the initial guess for the lognormal field constant to unity (r0

k =
1). Therefore, the initial samples in the chain will be required to
recover structures contained in the observation. In order to gain
intuition for the behaviour of our non-linear Hamiltonian sampler,
we compare two cases. The first case consists of an artificial obser-
vation including selection effects and observational mask generated
as described above. The second case is a comparison calculation,
where we set the observation response operator Ri = 1. In this latter
fiducial case, only shot noise remains as observational uncertainty.
It is important to note that the individual Markov samples are unbi-
ased in the sense that they possess the correct power information.
Unlike a filter, which suppresses power in the low signal-to-noise
ratio regions, the Hamiltonian sampler draws true samples from the
lognormal Poissonian posterior, given in equation (5), once burn-in
is completed. Therefore, a lognormal Poissonian sample has to be
understood as consisting of a true signal part, which can be extracted
from the observation and a fluctuating component, which restores

power lost due to the observation. This interpretation is similar to
the behaviour of the Gibbs sampler, as discussed in Jasche et al.
(2010), with the exception that there is no obvious way to separate
the true signal part from the variance contribution for the non-linear
Hamiltonian sampler. Hence, the lower the signal-to-noise ratio of
the data, the higher will be the fluctuating component.

This effect can be observed in Fig. 3 where we compare three
successive Markov samples to the true mock signal via a point-to-
point statistics. It can be nicely seen that the correlation with the
true underlying mock signal improves as burn-in progresses. As
expected, the fiducial calculation, shown in the right-hand panels
of Fig. 3, has a much better correlation with the underlying true
mock signal than the full observation. This is clearly owing to the
fact that the full observation introduces much more variance than
in the fiducial case. To visualize this fact further, we calculate the
Euclidean distance between Markov samples and the true mock
signal,

dk

({
δi

true

}
,
{
δi
k

}) =
√√√√ 1

N

N∑
i=1

(
δi

true − δi
k

)2
, (26)

over the progression of the Markov chain. In the lower panels of
Fig. 3, it can be observed that the Eucledian distance drops initially
and then saturates at a constant minimal dk. This minimal dk is
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Figure 3. Tests of the initial burn-in behaviour for the two test cases of the fiducial calculation (right-hand panels) and the full test taking into account the
observational uncertainties of survey geometry and selection effects (left-hand panels). The upper panels show successive point-to-point statistics between
the individual samples and the true underlying mock signal. It can be seen that the successive Hamiltonian samples show increasing correlation with the true
underlying signal. The lower panels show the successive Euclidean distances between samples and the true underlying signal during burn-in.

related to the intrinsic variance contribution in the individual sam-
ples. While the variance is lower for the fiducial observation, it is
higher for the full observation.

As HADES produces unbiased samples, we can gain more detailed
insight into the initial burn-in phase of the Markov chain, by fol-
lowing the evolution of successive power spectra measured from
the samples. In addition, we measure the deviation ξ k

l of the sample
power spectra Pk

l to the power spectrum of the true mock matter
field realization Ptrue

l via

ξk
l = P k

l − P true
l

P true
l

. (27)

Fig. 4 demonstrates that HADES completes burn-in after ∼20 samples
in the case of the fiducial calculation (right-hand panels). However,
the burn-in history for the full observation (left-hand panels) reveals
a more interesting behaviour.

Initially, the power spectra show huge excursions at large scales.
This is due to the observational mask and the fact that initially these
regions are dominated by the constant initial guess (r0

k = 1). It is
interesting to note that the first sample seems to be much closer to
the true underlying power spectrum at the smaller scales, while the
20th sample is much further away. This clearly demonstrates the
non-linear behaviour of the lognormal Poissonian sampler. We ob-
serve that with iterative correction of the large-scale power, the en-
tire power spectrum progressively approaches the true mock power
spectrum. This can be seen nicely in the lower left-hand panel of
Fig. 4. After 100 samples have been calculated the true mock power
spectrum is recovered for all the following samples. Thus, the initial
burn-in period for a realistic observational setting can be expected
to be of the order of 100 samples. Such a burn-in period is numeri-

cally not very demanding, and can easily be achieved in even higher
resolution calculations.

Further, we ran a full Markov analysis for both test cases, by
calculating 20 000 samples with a resolution of 643 voxels. We then
estimate the ensemble mean and compared the recovered density
field in the observed region via a point-to-point statistic to the true
underlying mock signal. The results are presented in the upper pan-
els of Fig. 5. It can be seen that both results are strongly correlated
with the true underlying signal. To emphasize this fact, we also
calculate the correlation factor given as

c =
∑N−1

i=0 δtrue
i δmean

i√∑N−1
i=0

(
δtrue
i

)2
√∑N−1

i=0

(
δmean
i

)2
. (28)

The correlation factors for the two test scenarios are also given in
Fig. 5. They clearly demonstrate that the Hamiltonian sampler was
able to recover the underlying density field to high accuracy in both
cases.

7.3 Convergence

Testing the convergence of Markov chains is subject of many dis-
cussions in literature (see e.g. Heidelberger & Welch 1981; Gelman
& Rubin 1992; Geweke 1992; Raftery & Lewis 1995; Cowles &
Carlin 1996; Hanson 2001; Dunkley et al. 2005). In principle, there
exist two categories of possible diagnostics. The methods of the
first category rely on comparing interchain quantities between sev-
eral chains while others try to estimate the convergence behaviour
from interchain quantities within a single chain. In this paper we
use the widely used Gelman & Rubin diagnostic, which is based on
multiple simulated chains by comparing the variances within each
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Figure 4. Successive power spectra measured from the Hamiltonian samples during burn-in. The right-hand panels correspond to the fiducial calculation, while
the left-hand panels display the burn-in behaviour of the complete observational problem. The upper panels show the convergence of the individual sample
spectra towards the spectrum of the true underlying matter field realization (black curve). The lower panels display the deviation from the true underlying
spectrum ξ k

l , demonstrating good convergence at the end of the burn-in period.

Figure 5. The upper panels show the point-to-point statistic of the ensemble mean field to the true underlying density field in the observed region for the
fiducial calculation (right-hand panel) and the full observational problem (left-hand panel). The numbers in the upper left-hand part of the plots correspond
to the Euclidean distance d and the correlation factor c. In the lower panels we plotted the results of the Gelman & Rubin convergence diagnostic for the
corresponding tests. The PSRF indicates good convergence.
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chain and the variance between chains (Gelman & Rubin 1992). In
particular, we calculate the potential scale reduction factor (PSRF)
(see Appendix B for details). A large PSRF indicates that the inter-
chain variance is substantially greater than the intrachain variance
and longer chains are required. Once the PSRF approaches unity,
one can conclude that each chain has reached the target distribution.

We calculated the PSRF for each voxel of our test cases for
chains with length Nsamp = 20 000. The results for the two tests, as
discussed above, are presented in Fig. 5. They clearly indicate the
convergence of the Markov chains.

For the time being we use the Gelman & Rubin statistic to test
convergence because of technical simplicity, although for the ex-
pense of having to calculate at least two chains. In the future we plan
to explore other convergence diagnostics. In particular we are aim-
ing at including intrachain methods as proposed in Hanson (2001)
or Dunkley et al. (2005). This would allow us to detect convergence
behaviour within the chain during burn-in. Such a convergence crite-
rion could then be used to adjust the Hamiltonian masses for optimal
sampling efficiency, as was proposed in Taylor et al. (2008).

7.4 Testing with simulated galaxy surveys

In this section, we describe the application of HADES to a mock
galaxy survey based on the Millennium Run (Croton et al. 2006).
The intention of this exercise is to test HADES in a realistic obser-
vational scenario. In particular, we want to demonstrate that HADES

is able to reconstruct the fully evolved non-linear density field of
the N-body simulation. The mock galaxy survey consists of a set
of comoving galaxy positions distributed in a 500-Mpc box. To in-
troduce survey geometry and selection effects, we virtually observe
these galaxies through the sky mask and according to the selection
function described in Section 7.1. The resulting galaxy distribu-
tion is then sampled to a 1283 grid. This mock observation is then
processed by HADES, which generates 20 000 lognormal Poissonian
samples.

In Fig. 6 we present successive slices through density samples
of the initial burn-in period. As can be seen, the first Hamiltonian
sample (upper panels in Fig. 6) is largely corrupted by the false
density information in the masked regions. This is due to the fact
that the Hamiltonian sampler cannot be initialized with a point on
the posterior surface. The initial samples are therefore required to
identify a point on the corresponding posterior surface. As can be
seen, the power in the unobserved and observed regions equalizes
in the following samples. Also note that the first density sample
depicts only very coarse structures. However, subsequent samples
resolve finer and finer details. With the hundredth sample burn-
in is completed. The lower panels of Fig. 6 demonstrate that the
Hamiltonian sampler nicely recovers the filamentary structure of
the density field.

Being a fully Bayesian method, the Hamiltonian sampler does
not aim at calculating only a single estimate, such as a mean or
maximum a posteriori value, it rather produces samples from the
full lognormal Poissonian posterior. Given these samples we are
able to calculate any desired statistical summary. In particular, we
are able to calculate the mean and the variance of the Hamiltonian
samples.

In Fig. 7 we show three different volume renderings of the ensem-
ble mean density and the ensemble variance fields. It can be seen
that the variance projections nicely reflect the Poissonian noise
structure. Comparing high-density regions in the ensemble mean
projections to the corresponding positions in the variance projec-
tions reveals a higher variance contribution for these regions, as

expected for Poissonian noise. This demonstrates that our method
allows us to provide uncertainty information for any resulting final
estimate.

8 SU M M A RY A N D C O N C L U S I O N

In this paper we introduced the HMC sampler for non-linear large-
scale structure inference and demonstrated its performance in a vari-
ety of tests. As already described above, according to observational
evidence and theoretical considerations, the posterior for non-linear
density field inference is adequately represented by a lognormal
Poissonian distribution, up to overdensities of δ ∼ 100. Hence,
any method aiming at precision estimation of the fully evolved
large-scale structure in the Universe needs to handle the non-linear
relation between observations and the signal we seek to recover. The
HMC sampler, presented in this paper, is a fully Bayesian method,
and as such tries to evaluate the lognormal Poissonian posterior,
given in equation (5), via sampling. In this fashion, the scientific
output of the method is not a single estimate, but a sampled rep-
resentation of the multidimensional posterior distribution. Given
this representation of the posterior any desired statistical summary,
such as mean, mode or variances can easily be calculated. Further,
any uncertainty can seamlessly be propagated to the finally esti-
mated quantities, by simply applying the corresponding estimation
procedure to all Hamiltonian samples.

Unlike conventional Metropolis–Hastings algorithms, which
move through the parameter space by random walk, the HMC sam-
pler suppresses random walk behaviour by following a persistent
motion. The HMC exploits techniques developed to follow classical
dynamical particle motion in potentials, which, in the absence of nu-
merical errors, yield an acceptance probability of unity. Although,
in this paper we focused on the use of the lognormal Poissonian
posterior, the method is more general. The discussion of the Hamil-
tonian sampler in Section 4 demonstrates that the method can in
principle take into account a broad class of posterior distributions.

In Section 7, we demonstrated applications of the method to
mock test cases, taking into account observational uncertainties
such as selection effects, survey geometries and noise. These tests
were designed to study the performance of the method in real-world
applications.

In particular, it was of interest to establish intuition for the be-
haviour of the Hamiltonian sampler during the initial burn-in phase.
Especially, the required amount of samples before the sampler starts
drawing samples from the correct posterior distribution was of prac-
tical relevance. The tests demonstrated that for a realistic set-up, the
initial burn-in period is of the order of ∼100 samples.

Further, the tests demonstrated that the Hamiltonian sampler pro-
duces unbiased samples, in the sense that each sample possesses
correct power. Unlike a filter, which suppresses the signal in low
signal-to-noise ratio regions, the Hamiltonian sampler non-linearly
augments the poorly or unobserved regions with correct statisti-
cal information. In this fashion, each sample represents a complete
matter field realization consistent with the observations.

The convergence of the Markov chain was tested via a Gelman
& Rubin diagnostic. We compared the intrachain and interchain
variances of two Markov chains each of length 20 000 samples.
The estimated PSRF indicated good convergence of the chain. This
result demonstrates that it is possible to efficiently sample from
non-Gaussian distributions in very high-dimensional spaces.

In a final test the method was applied to a realistic galaxy mock
observation based on the Millennium Run (Croton et al. 2006). Here
we introduced again survey geometry and selection effects and
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Figure 6. Slices through density samples during the initial burn-in phase. The upper panels correspond to the first sample, middle panels show the 10th
sample and the lower panels present the 100th sample. Left- and right-hand panels show two different slices through the corresponding sample. It can
be seen that during the initial burn-in phase power equalizes between the observed and unobserved regions. Successive samples recover finer and finer
details.
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Figure 7. Volume rendering of the ensemble variance (upper panels) and the ensemble mean (lower panels) obtained from the mock galaxy catalogue analysis
for three different perspectives. The mean shows filigree structures which have been recovered. It can also be seen that the ensemble variance reflects the
Poissonian behaviour of the noise. High-density regions in the ensemble mean field correspond to regions with high variance as is expected for a Poissonian
shot-noise contribution.

generated 20 000 samples of the lognormal Poissonian posterior.
The results nicely demonstrate that the Hamiltonian sampler re-
covers the filamentary structure of the underlying matter field re-
alization. For this test we also calculated the ensemble mean and
the corresponding ensemble variance of the Hamiltonian samples,
demonstrating that the Hamiltonian sampler also provides error in-
formation for a final estimate.

To conclude, in this paper we present a new and numerically
efficient Bayesian method for large-scale structure inference and
its numerical implementation HADES. HADES provides a sampled rep-
resentation of the very high-dimensional non-Gaussian large-scale
structure posterior, conditional on galaxy observations. This per-
mits us to easily calculate any desired statistical summary, such
as mean, mode and variance. In this fashion HADES is able to pro-
vide uncertainty information to any final quantity estimated from
the Hamiltonian samples. The method, as presented here, is very
flexible and can easily be extended to take into account additional
non-linear observational constraints and joint uncertainties.

In summary, HADES, in its present form, provides the basis for
future non-linear high-precision large-scale structure analysis.
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APPENDIX A : H AMILTO NIAN MASSES

The Hamiltonian sampler can be extremely sensitive to the choice
of masses. To estimate a good guess of Hamiltonian masses we
follow a similar approach as suggested in Taylor et al. (2008).
According to the leapfrog scheme, given in equations (20)–(22), a
single application of the leapfrog method can be written in the form

pi(t + ε) = pi(t) − ε

2

[
∂(r)

∂ri

∣∣∣∣
r(t)

+ ∂(r)

∂ri

∣∣∣∣
r(t+ε)

]
, (A1)

ri(t + ε) = ri(t) + ε
∑

j

M−1
ij pj (t) − ε2

2

∑
j

M−1
ij

∂(r)

∂rj

∣∣∣∣
r(t)

.

(A2)

We will then approximate the forces given in equation (17) for
ri � 1:

∂ψ(r)

∂rl

=
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Q−1
lj (rj + μj ) −
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b erl
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By introducing

Alj = Q−1
lj − [(

N
g
l − RlN̄

)
b − N

g
l b2

]
δK
lj (A4)

and

Dl =
∑

j

Q−1
lj μj − (

N
g
l − RlN̄

)
b, (A5)

equation (A3) simplifies to

∂ψ(r)

∂rl

=
∑

j

Alj rj + Dl . (A6)

Introducing this approximation into equations (A1) and (A2) yields

pi(t + ε) =
∑

m

[
δK
im − ε2

2

∑
j

AijM
−1
jm

]
pm(t)

− ε
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∑
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(A7)

and

ri(t + ε) = ε
∑

j

M−1
ij pj (t)

+
∑

m
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δK
im − ε2

2

∑
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M−1
ij Ajm

)
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∑
j
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ij Dj .
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This result can be rewritten in matrix notation as(
r(t + ε)

p(t + ε)

)
= T

(
r(t)

p(t)

)
− ε2

2

(
M−1 D

ε
[
I − ε2

2 AM−1
]
D

)
,

(A9)

where the matrix T is given as

T =
⎛
⎝

[
I − ε2

2 M−1A
]

εM−1

−ε A
[
I − ε2

4 M−1 A
] [

I − ε2

2 AM−1
]
⎞
⎠ , (A10)

with I being the identity matrix. Successive applications of the
leapfrog step yield the following propagation equation:(

rn

pn

)
= Tn

(
r0

p0

)
− ε2

2

[
n−1∑
i=0

Ti

](
M−1 D

ε
[
I − ε2

2 AM−1
]
D

)
.

(A11)
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This equation demonstrates that there are two criteria to be ful-
filled if the method is to be stable under repeated application of the
leapfrog step. First, we have to ensure that the first term of equa-
tion (A11) does not diverge. This can be fulfilled if the eigenvalues
of T have unit modulus. The eigenvalues λ are found by solving the
characteristic equation

det

[
I λ2 − 2 λ

(
I − ε2

2
AM−1

)
+ I

]
= 0. (A12)

Note that this is a similar result to what was found in Taylor et al.
(2008). Our aim is to explore the parameter space rapidly, and
therefore we wish to choose the largest ε still compatible with the
stability criterion. However, any dependence of equation (A12) also
implies that no single value of ε will meet the requirement for every
eigenvalue to have unit modulus. For this reason we choose

A = M. (A13)

We then yield the characteristic equation[
λ2 − 2λ

(
1 − ε2

2

)
+ 1

]N

= 0, (A14)

where N is the number of voxels. This yields the eigenvalues

λ = ±i

√
1 −

[
1 − ε2

2

]2

+
[

1 − ε2

2

]
, (A15)

which have unit modulus for ε ≤ 2. The second term in equa-
tion (A11) involves evaluation of the geometric series

∑n−1
i=0 Ti .

However, the geometric series for a matrix converges if and only
if |λi| < 1 for each λi eigenvalue of T. This clarifies that the non-
linearities in the Hamiltonian equations generally do not allow for
arbitrary large pseudo-time-steps ε. In addition, for practical pur-
poses we usually restrict the mass matrix to the diagonal of equa-
tion (A4). For these two reasons, in practice, we choose the pseudo-
time-step ε as large as possible while still obtaining a reasonable
rejection rate.

APPENDIX B: G ELMAN & RUBIN
DIAG NOSTIC

The Gelman & Rubin diagnostic is a multichain convergence test
(Gelman & Rubin 1992). It is based on analysing multiple Markov
chains by comparing intrachain variances, within each chain, and
interchain variances. A large deviation between these two variances
indicates non-convergence of the Markov chain. Let {φk}, where
k = 1, . . . , N, be the collection of a single Markov chain output.
The parameter φk is the kth sample of the Markov chain. Here, for
notational simplicity, we will assume φ to be single dimensional.
To test convergence with the Gelman & Rubin statistic, one has
to calculate M parallel MCMC chains, which are initialized from
different parts of the target distribution. After discarding the ini-
tial burn-in samples, each chain is of length n. We can then label
the outputs of various chains as φk

m, with k = 1, . . . , N and m =
1, . . . , M. The interchain variance B can then be calculated as

B = n

M − 1

M∑
m=1

(θm − 
)2 , (B1)

where θm is given as

θm = 1

n

n∑
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φk
m, (B2)

and 
 as
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M

M∑
m=1

θm. (B3)

Then the intrachain variance can be calculated as
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M∑
m=1

�2
m, (B4)

with

�2
m = 1

n − 1

n∑
k=1

(
φk

m − θm

)2
. (B5)

With the above definition the marginal posterior variance can be
estimated via

V = n − 1

n
W + M + 1

nM
B. (B6)

If all M chains have reached the target distribution, this posterior
variance estimate should be very close to the intrachain variance
W. For this reason, one expects the ratio V/W to be close to 1. The
square root of this ratio is referred to as the PSRF:

PSRF =
√

V

W
. (B7)

If the PSRF is close to 1, one can conclude that each chain has
stabilized, and has reached the target distribution (Gelman & Rubin
1992).

A P P E N D I X C : TH E B L AC K W E L L – R AO
E S T I M ATO R A N D T H E B I A S

One particular advantage of the Hamiltonian sampling procedure is
that it provides a sampled representation of the target distribution
given in equation (5). The sampled distribution can then be ex-
pressed by a set of Dirac delta distributions (see e.g. Andrieu et al.
2003; Robert & Casella 2005):

PNsamp

({sk}|
{
N

g
k

}) = 1

Nsamp

Nsamp∑
i=1

δD
({sk} − {

si
k

})
, (C1)

where {si
k} are the individual Hamiltonian samples. This allows for

constructing various Blackwell–Rao estimators for many quantities
in post-processing. In particular, we can provide the posterior dis-
tribution for biased density fields {s̃k} with a general non-linear,
non-local biasing function B(s)k via the Blackwell–Rao estimator

PNsamp

({s̃k}|
{
N

g
k

}
, B

) =
∫

d{sk}P({s̃k}|{sk}, B)P
({sk}|

{
N

g
k

})
≈

∫
d{sk}P({s̃k}|{sk}, B)PNsamp

({sk}|
{
N

g
k

})
=

∫
d{sk}P({s̃k}|{sk}, B)

× 1

Nsamp

Nsamp∑
i=1

δD
({sk} − {

si
k

})

= 1

Nsamp

Nsamp∑
i=1

P
({s̃k}|

{
si
k

}
, B

)
. (C2)

As can be seen the Blackwell–Rao estimate is obtained by simple
marginalization over the density samples.

In the usual case that we assume a specific exact biasing relation,
i.e.

s̃k = B(s)k, (C3)
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the result further simplifies considerably as the probability distribu-
tion P({s̃k}|{si

k}, B) collapses to a Dirac delta distribution. We can
then write

PNsamp

({s̃k}|
{
N

g
k

}
, B

) = 1

Nsamp

Nsamp∑
i=1

P({s̃k}|{si
k}, B)

= 1

Nsamp

Nsamp∑
i=1

δD
({s̃k} − {

B(si)k
})

.
(C4)

In this fashion, many density posterior distributions with differ-
ent bias models can be generated in a trivial post-processing step,
by simply applying the biasing relation to all Hamiltonian sam-
ples. Note that this Blackwell–Rao estimator is a unique feature

of the sampling approach since it relies on the set of Hamiltonian
samples.

As one usually might want to investigate various different biasing
models and since constructing the Blackwell–Rao estimates for the
biased density fields requires only a negligible fraction of the total
computation time required for the calculation of the entire Markov
chain, the post-processing generation of Blackwell–Rao estimates
is an ideal method to perform such studies. Also note that in this
fashion all observational non-Gaussian uncertainties are propagated
non-linearly to the finally inferred quantities.
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